
welcome.

Innovative technology consulting for business.

Introduction to GitOps
on OpenShift.

Vincent Brobald – Senior ICT Consultant / 2020-01-24

How to stop worrying about
environment reproductibility

1
What is GitOps?

Something old,
something new

GitOps

GitOps is an operating model for K8S (Kubernetes) cloud-native environments.

This model centers on the use of the Git distributed version control system to
provide a workflow for infrastructure as code, environment as code and
configuration as code.

While this model naturally emerged from the automation and Continuous
Delivery during the last two decades, it really found its rooting with the
emergence of K8S and and its declarative model.

The term GitOps itself was coined by Weaveworks in 2017 as they wanted to
formalize the processes for successful Git-based operations.

2
Principles of GitOps

Something borrowed

Configuration
Environment
Infrastructure

Main principles
Declarative description

= CODE

IMAGESTREAM

DEPLOYMENTCONFIG

CONFIGMAP
SERVICE

ROUTE

NETWORKPOLICY
TEMPLATE

DAEMONSET

CRD

MACHINESET

BUILDCONFIG
NAMESPACE

SERVICEACCOUNT ROLEBINDING

PERSISTENVOLUMECLAIM

STORAGECLASS

RESOURCEQUOTA

DESTINATIONRULE

VIRTUALSERVICE

Main principles
One versioned source of truth (scoped)

Configuration
Environment
Infrastructure = CODE

DISTRIBUTED
VERSION
CONTROL

Openshift Cluster

Main principles
All Ops are performed using the Git Workflow

Reconciler
operator

RO

RW
RW

RW

API

Main principles
Continuous monitoring and reconciliation

Reconciler
operator

Fetch desired state Fetch actual state

API
Update stateAnalyze differences

And
prepare action plan

Refresh upstream

3
Why GitOps

Just say no to bloated
tools and dashboards

Why GitOps
Workflow

You can reuse the best practices used for development workflow.
You benefit from the flexibility of the git collaborative model
Clear audit trail
You can use your git environment to enforce code review before merge.

Namespace/Project

Why GitOps
Self Healing and recovery - namespace

Reconciler
operator

ConfigMap

apiVersion: v1
data:
 maven-template: |-
 <org.csanchez.jenkins.plugins.kubernetes.
 <inheritFrom></inheritFrom>
 <name>maven</name>
 <privileged>false</privileged>
 <alwaysPullImage>false</alwaysPullImage>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>maven</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <customWorkspaceVolumeEnabled>false
 <workspaceVolume class="org.csanchez
 <memory>false</memory>
 </workspaceVolume>
 <volumes />
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.
 <name>jnlp</name>
 <image>openshift/jenkins-agent-maven-
 <privileged>false</privileged>
 <alwaysPullImage>false</alwaysPullIm

DeploymentConfig

piVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 template.alpha.openshift.io/wait-for-ready: "
 creationTimestamp: 2019-08-22T20:04:26Z
 generation: 10
 labels:
 app: jenkins
 template: jenkins-ephemeral-template
 name: jenkins
 namespace: cicd-vincent
 resourceVersion: "40783466"
 selfLink: /apis/apps.openshift.io/v1/namespacic
 replicas: 1
 revisionHistoryLimit: 10
 selector:
 name: jenkins
 strategy:
 activeDeadlineSeconds: 21600
 recreateParams:
 timeoutSeconds: 600
 resources: {}
 type: Recreate

Service
apiVersion: v1
kind: Service
metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 service.alpha.openshift.io/dependencie
 "", "kind": "Service"}]'
 service.openshift.io/infrastructure: "true"
 creationTimestamp: 2019-08-22T20:04:26Z
 labels:
 app: jenkins-ephemeral
 template: jenkins-ephemeral-template
 name: jenkins
 namespace: cicd-vincent
 resourceVersion: "27052333"
 selfLink: /api/v1/namespaces/cicd-vincent/ser
 uid: 0b0d5b64-c518-11e9-b1c1-525400edd645
spec:
 clusterIP: 172.30.102.3
 ports:
 - name: web
 port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 name: jenkins
 sessionAffinity: None
 type: ClusterIP

!

Why GitOps
Allows low risk scrap & replace.

The continuous reconciliation has a very positive side-effects:

● Your configuration definition is tested continuously
● Therefore it is always current
● So you can reuse it with confidence to restart with a clean

situation.

4
Topologies

Operational Models
Single reconcilier – Full cluster

Cluster
Reconciler

operator

Namespace

Key Features:

● All namespaces in one Git project
● One reconciler managing all namespaces

Useful for:

- Clusters needing tightly coupled lifecycle
- Lightweight clusters (decentralized/edge)

Namespace

Operational Models
Cascading reconciler – Full cluster

Cluster
Reconciler

operator

Namespace Namespace

Reconciler
operator

Reconciler
operator

Reconciler
operator

Key Features:

● One Git project and one reconciler for
the cluster-level resources and project
bootstrapping.

● One Git project and one reconciler per
namespace (or namespace group)

Typical use:

Large clusters hosting various different
projects with dissociated lifecycle and
managing teams.

Operational Models
Single reconciler – single namespace

Cluster

Namespace Namespace

Reconciler
operator

Key Features:

● One Git project and one namespace

Typical use:

Hosting one project on a shared platform
where you have no cluster admin right

5
Attention points

Attention points
Your Git is your source of truth

MAKE BACKUPS
MAKE IT HIGHLY AVAILABLE

MAKE IT SECURE
USE PROPER GITFLOW

DO NOT TRY TO CIRCUMVENT IT
ENSURE IT CAN COPE WITH THE LOAD

Attention points
Prepare your content correctly

When possible, do not include values that will be overwritten by the cluster itself, like revision
numbers, generation, status, ...

In Openshift, if you use deploymentConfigs with automatic rollout of new images, do not
populate the image field in the deployment template, let the update trigger fill it for you.

triggers:
 - imageChangeParams:
 automatic: true
 containerNames:
 - jenkins
 from:
 kind: ImageStreamTag
 name: jenkins:2
 namespace: openshift

Attention points
What about secrets?

Never store them in plain text in Git!

Whenever possible, use a vault solution like those from Hashicorp or CyberArk

If not possible, use a tool like bitnami’s sealed-secrets.

6
Tools

Tools
There are plenty...

Box/Kube-applier: simple controller, no pruning, can be a bit rough for complex environments. Pull
model

Certified Jenklins: the jenkins provided along with Openshift can be easily scripted to match almost
the functional level of the Kube-applier while also providing webhooks. Only push model

Weaveworks Flux: a cloud-native minded operator with some modularity. Pull model

Intuit Argo CD: a full-fledged operator-based solution with UI and API, Argo is well rooted in K8S
best practices and can work in multicluster out of the box. Jenkins plugin. Pull and Push model

GitOps engine: a work-in-progress produced by authors of both Argo and Flux solutions.

Questions ?

Demo material

Kube-applier version used for the presentation:
- source: https://github.com/brobaldv/kube-applier
- oci image: https://hub.docker.com/r/vincentbrobald/oc-applier

Objects used for the demo:
- source: https://github.com/brobaldv/rhtd2020-gitops-democontent01.git

https://github.com/brobaldv/kube-applier
https://hub.docker.com/r/vincentbrobald/oc-applier
https://github.com/brobaldv/rhtd2020-gitops-democontent01.git

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25

